博客
关于我
【Spark】Spark 优化操作之自定义 distinct
阅读量:372 次
发布时间:2019-03-05

本文共 801 字,大约阅读时间需要 2 分钟。

由于Spark的distinct算子默认实现效率较低,需要自行优化以提升性能。

具体实现方式非常简单,主要基于集合的特性。

def mydistinct(iter: Iterator[(String, Int)]: Iterator[String] = {     iter.foldLeft(Set[String]())((curS, item) => curS + item._1).toIterator}

使用mydistinct的方式如下:

val rdd2 = rdd1.map(x => (x._1 + SPLIT + x._2 + SPLIT + x._3 + SPLIT + x._4, 1)).partitionBy(new org.apache.spark.HashPartitioner(100)).mapPartitions(SetProcess.mydistinct).map(key => {       val strs = key.split(SPLIT)       (strs(0), strs(1), strs(2), strs(3))

说明:

  • mydistinct通过Set的特性实现去重,在每个partition内完成后再进行reduce,这样可以显著提升去重效率。
  • 在进行mydistinct之前,需要先对数据进行partitionBy操作。因为数据的key值发生了变化,原有的RDD分区可能不适用于新的RDD。如果不做partitionBy,可能会导致不同的partition之间存在重复数据,从而影响最终的去重效果。
  • 通过partitionBy操作,可以将相同key值的数据刷新到同一个partition中。在每个partition内使用Set去重,大大提高了整体性能。
  • 这种方法充分利用了Spark的高效分区机制和集合的去重特性,实现了高效的去重操作。

    转载地址:http://xdig.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0074---handler链调用机制实例1
    查看>>
    Netty工作笔记0075---handler链调用机制实例1
    查看>>
    Netty工作笔记0076---handler链调用机制实例3
    查看>>
    Netty工作笔记0077---handler链调用机制实例4
    查看>>
    Netty工作笔记0078---Netty其他常用编解码器
    查看>>
    Netty工作笔记0079---Log4j整合到Netty
    查看>>
    Netty工作笔记0080---编解码器和处理器链梳理
    查看>>
    Netty工作笔记0081---编解码器和处理器链梳理
    查看>>
    Netty工作笔记0082---TCP粘包拆包实例演示
    查看>>
    Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty工作笔记0085---TCP粘包拆包内容梳理
    查看>>
    Netty常用组件一
    查看>>
    Netty常见组件二
    查看>>
    Netty应用实例
    查看>>
    netty底层——nio知识点 ByteBuffer+Channel+Selector
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty心跳检测
    查看>>
    Netty心跳检测机制
    查看>>
    netty既做服务端又做客户端_网易新闻客户端广告怎么做
    查看>>