博客
关于我
【Spark】Spark 优化操作之自定义 distinct
阅读量:372 次
发布时间:2019-03-05

本文共 801 字,大约阅读时间需要 2 分钟。

由于Spark的distinct算子默认实现效率较低,需要自行优化以提升性能。

具体实现方式非常简单,主要基于集合的特性。

def mydistinct(iter: Iterator[(String, Int)]: Iterator[String] = {     iter.foldLeft(Set[String]())((curS, item) => curS + item._1).toIterator}

使用mydistinct的方式如下:

val rdd2 = rdd1.map(x => (x._1 + SPLIT + x._2 + SPLIT + x._3 + SPLIT + x._4, 1)).partitionBy(new org.apache.spark.HashPartitioner(100)).mapPartitions(SetProcess.mydistinct).map(key => {       val strs = key.split(SPLIT)       (strs(0), strs(1), strs(2), strs(3))

说明:

  • mydistinct通过Set的特性实现去重,在每个partition内完成后再进行reduce,这样可以显著提升去重效率。
  • 在进行mydistinct之前,需要先对数据进行partitionBy操作。因为数据的key值发生了变化,原有的RDD分区可能不适用于新的RDD。如果不做partitionBy,可能会导致不同的partition之间存在重复数据,从而影响最终的去重效果。
  • 通过partitionBy操作,可以将相同key值的数据刷新到同一个partition中。在每个partition内使用Set去重,大大提高了整体性能。
  • 这种方法充分利用了Spark的高效分区机制和集合的去重特性,实现了高效的去重操作。

    转载地址:http://xdig.baihongyu.com/

    你可能感兴趣的文章
    mysql 网络目录_联机目录数据库
    查看>>
    MySQL 聚簇索引&&二级索引&&辅助索引
    查看>>
    Mysql 脏页 脏读 脏数据
    查看>>
    mysql 自增id和UUID做主键性能分析,及最优方案
    查看>>
    Mysql 自定义函数
    查看>>
    mysql 行转列 列转行
    查看>>
    Mysql 表分区
    查看>>
    mysql 表的操作
    查看>>
    mysql 视图,视图更新删除
    查看>>
    MySQL 触发器
    查看>>
    mysql 让所有IP访问数据库
    查看>>
    mysql 记录的增删改查
    查看>>
    MySQL 设置数据库的隔离级别
    查看>>
    MySQL 证明为什么用limit时,offset很大会影响性能
    查看>>
    Mysql 语句操作索引SQL语句
    查看>>
    MySQL 误操作后数据恢复(update,delete忘加where条件)
    查看>>
    MySQL 调优/优化的 101 个建议!
    查看>>
    mysql 转义字符用法_MySql 转义字符的使用说明
    查看>>
    mysql 输入密码秒退
    查看>>
    mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
    查看>>