博客
关于我
【Spark】Spark 优化操作之自定义 distinct
阅读量:372 次
发布时间:2019-03-05

本文共 801 字,大约阅读时间需要 2 分钟。

由于Spark的distinct算子默认实现效率较低,需要自行优化以提升性能。

具体实现方式非常简单,主要基于集合的特性。

def mydistinct(iter: Iterator[(String, Int)]: Iterator[String] = {     iter.foldLeft(Set[String]())((curS, item) => curS + item._1).toIterator}

使用mydistinct的方式如下:

val rdd2 = rdd1.map(x => (x._1 + SPLIT + x._2 + SPLIT + x._3 + SPLIT + x._4, 1)).partitionBy(new org.apache.spark.HashPartitioner(100)).mapPartitions(SetProcess.mydistinct).map(key => {       val strs = key.split(SPLIT)       (strs(0), strs(1), strs(2), strs(3))

说明:

  • mydistinct通过Set的特性实现去重,在每个partition内完成后再进行reduce,这样可以显著提升去重效率。
  • 在进行mydistinct之前,需要先对数据进行partitionBy操作。因为数据的key值发生了变化,原有的RDD分区可能不适用于新的RDD。如果不做partitionBy,可能会导致不同的partition之间存在重复数据,从而影响最终的去重效果。
  • 通过partitionBy操作,可以将相同key值的数据刷新到同一个partition中。在每个partition内使用Set去重,大大提高了整体性能。
  • 这种方法充分利用了Spark的高效分区机制和集合的去重特性,实现了高效的去重操作。

    转载地址:http://xdig.baihongyu.com/

    你可能感兴趣的文章
    Nginx的Rewrite正则表达式,匹配非某单词
    查看>>
    Nginx的使用总结(一)
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NI笔试——大数加法
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
    查看>>
    NR,NF,FNR
    查看>>
    nrf开发笔记一开发软件
    查看>>
    NSDateFormatter的替代方法
    查看>>
    NSSet集合 无序的 不能重复的
    查看>>
    ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
    查看>>
    nullnullHuge Pages
    查看>>
    numpy 用法
    查看>>