博客
关于我
【Spark】Spark 优化操作之自定义 distinct
阅读量:372 次
发布时间:2019-03-05

本文共 801 字,大约阅读时间需要 2 分钟。

由于Spark的distinct算子默认实现效率较低,需要自行优化以提升性能。

具体实现方式非常简单,主要基于集合的特性。

def mydistinct(iter: Iterator[(String, Int)]: Iterator[String] = {     iter.foldLeft(Set[String]())((curS, item) => curS + item._1).toIterator}

使用mydistinct的方式如下:

val rdd2 = rdd1.map(x => (x._1 + SPLIT + x._2 + SPLIT + x._3 + SPLIT + x._4, 1)).partitionBy(new org.apache.spark.HashPartitioner(100)).mapPartitions(SetProcess.mydistinct).map(key => {       val strs = key.split(SPLIT)       (strs(0), strs(1), strs(2), strs(3))

说明:

  • mydistinct通过Set的特性实现去重,在每个partition内完成后再进行reduce,这样可以显著提升去重效率。
  • 在进行mydistinct之前,需要先对数据进行partitionBy操作。因为数据的key值发生了变化,原有的RDD分区可能不适用于新的RDD。如果不做partitionBy,可能会导致不同的partition之间存在重复数据,从而影响最终的去重效果。
  • 通过partitionBy操作,可以将相同key值的数据刷新到同一个partition中。在每个partition内使用Set去重,大大提高了整体性能。
  • 这种方法充分利用了Spark的高效分区机制和集合的去重特性,实现了高效的去重操作。

    转载地址:http://xdig.baihongyu.com/

    你可能感兴趣的文章
    node模块化
    查看>>
    Node读取并输出txt文件内容
    查看>>
    node防xss攻击插件
    查看>>
    noi 7827 质数的和与积
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    NOIp模拟赛二十九
    查看>>
    NOPI读取Excel
    查看>>
    NoSQL&MongoDB
    查看>>
    NoSQL介绍
    查看>>
    Notepad++在线和离线安装JSON格式化插件
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    Now trying to drop the old temporary tablespace, the session hangs.
    查看>>
    np.arange()和np.linspace()绘制logistic回归图像时得到不同的结果?
    查看>>
    npm error MSB3428: 未能加载 Visual C++ 组件“VCBuild.exe”。要解决此问题,1) 安装
    查看>>
    npm install digital envelope routines::unsupported解决方法
    查看>>
    npm install 卡着不动的解决方法
    查看>>
    npm install 报错 ERR_SOCKET_TIMEOUT 的解决方法
    查看>>
    npm install 报错 no such file or directory 的解决方法
    查看>>
    npm install报错,证书验证失败unable to get local issuer certificate
    查看>>